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ABSTRACT

We proposed in our previous work an iterative minimum-mean-square-error (MMSE) cooperative positioning
algorithm. MMST cooperative positioning method achieves better root-mean-square-error (RMSE) performance
than existing classical estimators. And it is implemented in an iterative pattern so as to circumvent the intense
computation burden of the numerical mulfiple integral computation methods. 'The basis of the proposed iterative
MMSE method is the single-node MMSE, which is actually the special case of the MMSE cooperative method
when the number of node N being 1. In this work, we study the properties of the single-node MMSE and
accordingly propose three variants of the original algorithm to improve the performance. The single-node MMSE
and its variants can also be used to produce initial position estimation for the maximum likelihood estimator
(MLE), one of the most popular existing classical estimators, and achieve almost the same performance as using
true positions as the initial positions.
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1. INTRODUCTION

We proposed in our previous work!- minimum-mean-square-error (MMSE) cooperative positioning algorithm.
Numerical methods are needed for computing the multiple integrals in MMSE formula. This brings intense
computation burden especially for large size networks. To circumvent this problem, we also proposed in' to
implement MMSE cooperative positioning algorithm in an iterative pattern where only a single-node MMSE
needs to be computed at each iteration. The iterative MMSE costs a lot less computation and achieves better
root-mean-square-error (RMSE) performance than existing classical estimators.

Obviously, the single-node MMSE, a special case of the MMSE cooperative method when the number of node
N being 1, is the basis of the iterative MMSE. In this work, we study the properties of the single-node MMSE
and propose three variants to improve the performance.

One of the significant propertics of MMSE estimator is that better performance is achieved for nodes that
are closer to a priori probability density function (PDF) center. Another important property observed is that for
a square area, although the true positions are scattered all over the whole square area, the positions estimated
by the original MMSE estimator fall within a squeezed-box shape area. Greater details are presented later.

According to these properties, three variants are proposed. The first variant is named large scale MMSE
(LS-MMSE), where a virtual a priori PDF that covers a larger area than the actual a priori PDF is used. The
second variant is referred to as MMSE-mapping, where we map the originally obtained estimated position to
another position according to certain rules and use the position after mapping as the final estimated positions.
The third variant, called two-stage MMSE (TS-MMSE) is to add one more step to MMSE-mapping. At this
second step, original MMSE is applied again assuming that each true position is uniformly distributed within a
new smaller square whose center is the obtained estimated position.

Although these variants are proposed for single-node MMSE, it is actually quite straightforward to extend
the application of these modified MMSE estimator to multiple nodes networks.

The single-node MMSE and its variants can also be used to produce initial position estimation for the
maximum likelihood estimator (MLE), one of the most popular existing classical estimators, and achieve almost
the same performaice as using true positions as the initial positions.
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The remaining of this paper is organized as follows. The system model and MMSE cooperative positioning
algorithm are presented in Section 2. Then, we take a close look at the properties of the performance of the
single-node MMSE algorithm in Section 3. Based on these properties, we make modifications accordingly to the
original single-node MMSE algorithm and propose three variants, as presented in Section 4. Numerical results
shown in Section 5 verify the improved performance achieved by these variants. Conclusion of this paper is then
addressed in Section 6.

2. SYSTEM MODEL AND MMSE COOPERATIVE POSITIONING

The nodes whose positions are unknown and to be estimated are referred to as unknown nodes. 'To estimate the
coordinates of unknown nodes, we need anchor nodes, whose positions are known in advance.

Consider a wireless network of N unknown nodes and M anchor nodes. The position for any unknown node
i, 1 <4 < N, is described by its coordinates (®;,%;). The node j = N +1,---, M refers to one of M anchor
nodes. All nodes transmit at a fixed known powcer level. The received signal power between any pair of nodes is
observed to estimate the coordinates of unknown nodes. '

Let F;; denote the received power strength at the node ¢ from the node j, whose distance is denoted as d;.
As in,?2 we adopt the classical log-normal distribution® for P;;. Thus, we have

Pyy(dB) ~ N (Py(dB), oip) (1)

where P,;(dB) is the expectation corresponding to the specific d;; and the variance 7, keeps the same for
any distance. Suppose the average received power strength at distance dy is Py(dB). Py and dp are called the
reference power and distance respectively. According to,® we have

Py;(dB) = Py(dB) — 10n,log1o (%) ) (2)
0

where ny, is the path loss exponent.

As in,* the a priori distribution for unknown nodes is assumed to be independent uniform distribution.
Suppose the node ¢ may appear within a rectangular box centered at (O, Ogy) of 24; long along x-axis and 2.13;
long along y-axis. Then, for «; € (O — Aj, Osn + A3), 45 € (O4y — By, Oy + B;), 1 <1 < N, the a priori PDI" is
expressed as
1
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As presented in our previous work,! with the independent uniform a priori distribution (3) and the log-normal
distribution for power degradation (1), the MMSE cooperative position estimator for node i, 1 <4 < N, can be
derived as
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where In is the natural logarithm and
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S; is the integral region for 0; = (;,y;), expressed as

% € (Oiz — As, O + Aj) }

5i = {(Ii’yi) Yi € (Oiy — By, Oiy + By)

107, 2
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o ((TdB In l()> ’ @
and y

. Py "p

dij = dy ("ﬁ;) . (8)

Numerical methods, such as Simpon quadrature and Monte Carlo methods® | are needed to compute multiple
integrals in MMSE formula (4), which are complicated and have no close form solution. The computation cost
increases exponentially with the number of unknown nodes. To circumvent huge computation burden, we propose
an iterative MMSL) in' where the MMSE [ormula (4) for the special case N = 1 is repeatedly applied with
adaptively adjusted priori PDI.

It is obvious that the overall performance depends on the performance of single-node MMSE. Therefore, in the
following, we take a close look at the performance and properties of single-node MMSE and explore modifications
to achieve better performance.

3. PERFORMANCE AND PROPERTIES OF SINGLE-NODE MMSE

As in,®7 it is assumed that all unknown nodes are within a single square area and there are four anchor nodes,
with one anchor node at each of the four corners. Now, let us have a look at how the MMSE algorithm performs
in the case of single-node i.e. N = 1.

The root mean square error (RMSE) between the true and estimated positions is used as the performance
metric. We are going to look at two kinds of RMSE. Average RMSE, which is averaged with respect to all
possible true positions, is used to evaluate overall performance of certain positioning algorithm. The RMSE
for a particular true position (%, ), denoted as RMSE(Z, §), provides insights into how different true positions
coniribute dilferently to the average RMSE. RMSE(#, ) can be mathematically expressed as

RMSE(Z, §) = \/E[(:z —&)2 + (5 - 9)2|(Z,9)], (9)

where the expectation is taken only with respect to (az;, f/)

The performance of the single-node MMSE for different true positions is illustrated in Fig. 1. We study
RMSE(%, §) for three different types of positions:(a) cenler position, the position close to a priori PDF center,
which is (0.53,0.53) in our example; (b) corner position, a position near a corner; (¢} side position, a position
besides a side. As an example, in Fig. 1, the corner and side positions are picked at (0.2,0.9) and (0.1,0.5)
respectively.

As shown in Pig. 1,the RMSE for the center positions is smaller than that for those positions further away
from a priori PDF center. This is expected since MMSE generally works better when true value gets closer to
the expectation.® Furthermore, among the positions far away from a priori PDF center, the RMSE for corner
positions is smaller than that for side positions. Intuitive explanations are as follows. The MMSE estimator for
a corner position is inherently restricted into a smaller area than that for a side position and is thus subject to
smaller possible errors. The Cramér-Rao bound (CRB) is also shown in the figure for comparison purpose.

To have a complete picture about how the MMSE estimator performs for single-node, 500 positions are
randomly picked as the true positions for N = 1 case and the result is shown in Fig. 2. It is noticed that though
the true positions are uniformly distributed among the whole square, the estimated positions tend to fall within a
squeezed-box shape area as covered by the blue or the black diamonds. This means that bias of MMSE estimator
is much larger for those side positions. These observations motivate the variants of the MMSE estimator, which
will be presented in the next section.
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Figure 1. The single-node MMSE performance for different true positions (See Table 1 for symbol explanations.)

Figure 2. The single-node MMSE performance (See Table 1 for symbol explanations.)
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Table 1. Symbol Explanation for Iig. 1~2

Symbol Meaning
blue square anchor nodes

red dot the true position
blue asterisk estimated position

the mean of the estimated positions for a

black diamond .
true position

black ellipse uncertainty ellipse
red ellipse CRB ellipse
o (]
‘T’]i
0.0} .9

Figure 3. .S-MMSE estimator uses the larger square {dashed line) for the virtual a priori PDF, while the smaller square
(solid line) is for the actual a priori PDF.

4. VARIANTS OF SINGLE-NODE MMSE ALGORITHM
4.1 LS-MMSE

According to the section 3, better RMSE is achieved by the original MMSE estimator for nodes that are closer
to a priori PDF center. This enlightened the thought that if we could “push” all nodes closer to the center then
the overall performance may be improved. Since a priori PDT for the true positions, or the actual o priori PDF,
is fixed, we cannot actually push the nodes to be closer to the center. However, we can consider a larger square
for a priori PDF used for computing the conditional mean. This equivalently brings all nodes relatively closer to
the center. This a priori PDF with larger square is called virtual o priori PDF. Specifically, as sketched in Fig. 3,
though the true position (x,y) is distributed according to uniform distribution within a 1 by 1 square (solid
line), the uniform distribution within a larger 1 +2d by 14 2d square (dashed line) is used instead for computing
integrals for the conditional mean. The resulting MMSL estimator is named large scale MMSE (LS-MMSE)
estimator, which is obtained according to (4) with

S;=A(z, )| —d<a; <1+d,—d <y <1+4d}, Vi

An empirical value for d is one tenth of the side length. Tn our case, d = 0.1. T.S-MMSE improves the RMSE
performance (as shown by the simulation results later) without any extra computation burden. If is noted that
in the original MMSE estimator, the actnal a priori PDF is the same as the virtual a priori PDF.

4.2 MMSE-Mapping and TS-MMSE

Fig. 2 in the section 3 reveals that though the true positions are scattered all over the whole square area,
the positions estimated by the original MMSE estimator fall within a squeezed-box shape area. Based on this
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Figure 1. The mapping scheme for MMSE-Mapping

observation, we propose to map the MMSE estimated position to a new position so that the area covered by the
estimated positions alter mapping can overlap with the area covered by the true positions as much as possible.
Intuitively, this will bring the average estimatcd positions closer to the true position and thus can reduce bias
and RMSE. The obtained estimator is named MMSE-Mapping.

The mapping is illustrated in Fig. 4. 'The square is the original area where all nodes appear and it is divided
into four regions marked from 1 to 4. ‘L'he circumcircle is introduced for mapping. P at (£,9§) is the original
MMSE estimated position and P* at (£*,7") is the new estimated position after mapping. An auxiliary line,
connecting the center point @ at (1/2,1/2) and P, intersects the square at P1 and the circumcircle at Po. We

choose P* so that N
dp,Q)  d(P,Q) ,
where d(A, B) stands for the distance between the point A and the point B. Obviously, d(P, Q) = V2/2, the

radius of the circumecircle. Let & be the slope of the auxiliary line, thus & = :“n':_ The coordinates of Py,

walmfiopn

(xp,,yp, ), which are needed to compute d(Py, @), are

( i §1.):};]) if Py is in the region 1 »
(0,5 —§) if P, is in the region 2
T = - . 11
ENTY (1,3 + g—) if P, is in the region 3 (1)
(5 — 55,0) if Py is in the region 4

According to the mapping rule in (10}, it is easy to derive that

e
i =
where, d(P, Q) = /& = 1727 + (5 = 1/25, d(F1,Q) = /lem — 1727 + (ym — 1/2)° with (z,,yp,) obtained

g1
according to (11), and 6 = argtan %j—, which is the angle of the auxiliary line.
2

V2 A(PQ)
% g o8
3 d(P.Q) .
+ L2 d(Pl%) sinf

(12)

B2l W3

Pertormance can be further improved if we apply the MMSE estimation method again, assuming that each
true position is uniformly distributed within a new smaller square whose center is the corresponding MMSE-
Mapping estimator, i.e. the estimated position after mapping. For this second stage MMSL, empirically, the
length of the smaller square can be chose as one Afth of the length of the original square. The obtained new
estimator is named two-stage MMSE (TS-MMSE) estimator, since we apply MMSE twice at two stages. To put

Proc. of SPIE Vol. 8061 80610D-6

DRFIEDRR58011430.207 50,207 83 in




Table 2. Comparison of Different Estimations

Estimator RMSE
MDS 0.2571
MLE 0.2031
MDS-MLE 0.1959
. MLE-Ideal 0.1928
CRB=0.1811
MMSE 0.1515
MMSE-Mapping | 0.142
LS-MMSE 0.1344
TS-MMSE 0.1329

MLE : MLE with random initial estimation
MLE-Ideal : MLE with true positions as initial
estimation

it precisely, the TS-MMSE estimator is obtained using (4), where A4; = B; = 0.2 and (Oyy, Oyy) = (&7, §;) with
(&F,9}) being obtained according to (12) (the mapping step) from the original MMSE estimator (#;,7;). The
TS-MMSE works like a turbo engine. After the first time MMSE is implemented, mapping is carried out to tune
up the estimated positions. These new estimated positions are used to determine the centers of smaller square
areas so that MMSE can be implemented again with the new virtual a priori PDF.

As pointed out in our introduction, the proposed variants can be easily applied to multiple node networks,
though they are based on single-node MMSE. For example, if we replace all integral intervals corresponding to
the actual a priori PDF in the cooperative MMSE formula (4) with intervals corresponding to the larger area of
the virtual a priori PDF, we have LS-MMSE for multiple nodes positioning. Similarly, for MMSE-Mapping, when
there are more than one nodes, we can apply mapping to each node’s estimated position which is obtained using
the cooperative MMSE algorithm. Then, we can use the estimated position as new center and apply cooperative
MMSL algorithm again to obtain the TS-MMSE results.

5. NUMERICAL RESULTS

First, we compare original single-node MMSE and its variants with existing popular algorithms ML, MDS
in terms of RMSE and list the results in Tab. 2 where “MLE” refers to the regular MLE with random initial
estimation and “MLE-Ideal” refers to the MLE algorithm with the true positions as the perfect initial estimation,
which is the ideal case for MLE. The CRB is also provided for comparison. It is seen that RMSE of MMSE is
smaller than CRB. This indicates MMSE is better than any (unbiased) classical estimator. Also, three variants
achieves smaller RMSE than the original MMSE algorithm.

The well known MLE positioning estimator is quite sensitive to the initial estimation. It does not work well
enough if the initial estimation is randomly generated. This can be seen from Tab. 2 and it is also shown in
[ig. 5(a). I the perfect initial estimation, i.e. the true position, is used, MLE works extremely well as shown in
Fig. 5(b). Truc positions are unknown and to be estimated, so MLE with perfect initial estimation is an ideal
but impractical solution. Fortunately, a very good initial estimation can be obtained quickly by applying the
single-node MMSE to ecach of the nodes. The obtained MMSE initial estimation is then fed into the iterative
algorithm for MLE. The resulting estimator is then named MMSE-MLE. To improve the accuracy of initial
estimator, we can implement certain variant of MMSE, such as LS-MMSE (Section 4.1), instead of the original
MMSE. The performance of MMS1-MLIS using LS- MMbb is shown in Fig. 5(c) It can be seen that MMSE-MLE
performs as well as MLE with perfect initial estimation.

Now let’s look at how the variants work for a more general case where N > 1. Of all three variants, LS-
MMSLE achieves the best tradeoff between performance improvement and extra computation cost. Therefore we
focus on LS-MMSE. RMSE performance of different estimators for multiple nodes networks is shown in Iig.6,
where the proposed MMSK cooperative estimator (MMSE), its variant LS-MMSE, MDS, MLE with random
initial estimation (MLE), MLE with MDS used as the initial estimation (MDS-MLE) are compared. CRB is also
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provided. It can be seen that LS-MMSE brings obvious performance improvement over MMSE for any N and
they both are better than the CRB.

6. CONCLUSIONS

We study how the proposed MMSE cooperative estimator works for the special case of N = 1. Based on the
observed properties, three variants of the original MMSE estimator, which are LS-MMSE, MMSE-Mapping and
TS-MMSE are proposed. And it is shown that they achieve better performance than original MMSIE. Comparison
with the most popular existing algorithms, including MDS and MLE, in terms of RMSE and CRB verifics the
superior performance of the proposed MMSE estimator and its variants. The proposed MMSE estimator and
its variants can also be used to provide initial position estimation for MLE positioning algorithm and achieve
performance almost the same as using perfect initial estimation.
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